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1. Introduction
Over the last decade, Digital Health Technologies (DHTs) 
have proven to be effective in measuring human activity 
and physiology, and been integrated into numerous clini-
cal trials (Digital Medicine Society (DiME), 2021). DHTs 
have evolved rapidly especially in recent years, with aston-
ishing strides toward miniaturization and life-cycle exten-
sion. It has been reported previously (Karas et al., 2019) 
that small sensors such as accelerometers could provide 
valuable information about the study participants’ health 
condition. While more of these sensors (e.g. heart rate 
monitor, thermometer, pulse oximeter (SpO2), continu-
ous glucose monitoring) were being packaged together 
in modern wearable devices, one of the most common 
questions to ask is, whether and how we can better 
understand human health using the data from all these 
sensors combined. This question arises naturally from 
the fact that each sensor often provides location-specific 
information, that is, limited to one dimension of human 
activity or physiology. For example, accelerometers 
measure the magnitude of physical movement of the 
body, while heart rate monitors may indicate the level 
of exertion. However, neither of these two sensors could 
reliably provide blood oxygen level, which would need 
an SpO2 sensor. For a study focusing on heart failure, 
each of the three domains (activity, exertion, and blood 
oxygen level) have its own clinical indication and miss-
ing any of them may fail to provide a holistic picture of 
disease progression.  Therefore, combining multi-modal 
sensor data may enable more comprehensive phenotyp-
ing, better symptom characterization and more accurate 
assessment of changes in health status over time.

A few notable studies have explored this path. Meri-
kangas et al. (2019) included both an accelerometer and 

an ecological momentary assessment (EMA) component 
in their study to examine the associations among motor 
activity, energy, mood, and sleep. The joint modeling 
of a) the motor activity and sleep measurement derived 
from accelerometry data and b) the mood and energy 
level assessed through the EMA devices offered the 
authors opportunities to gain insights into how these dif-
ferent domains interact with each other and potentially 
what the therapeutic target is for patients with bipolar 
disorder. A similar example is the Apple Women’s 
Health Study (Mahalingaiah et al., 2021), which aims 
to investigate the relationship among women’s men-
strual cycles, health and behavior, through a “mobile-
application-based longitudinal cohort study” that has 
both a sensor and a survey component. Their analysis 
aims to combine both the (monthly) survey data with 
longitudinally measured smartphone/watch data, so that 
a better understanding might be reached of how the 
menstrual cycle relates to exercise, sleep, environment, 
behavioral and other physiological processes. Besides 
typical observational studies, Quer et al. ( 2021) show-
cased that multi-modal sensor data including heart rate, 
sleep and activity coupled with self-reported symptoms 
could significantly distinguish between symptomatic 
individuals with and without a diagnosis of COVID-19

These studies all highlighted the fact that multi-
modal sensors were beneficial because each sensor 
contributed distinct aspect of information to the statisti-
cal model. However, there are considerations research-
ers should be aware of, before conducting studies with 
multi-modal sensors. In the remainder of this article, we 
will first discuss typical analytical challenges, and then 
elaborate on the requirements of deploying multi-modal 
sensors in clinical studies.
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2. Analytical Challenges of Multi-Modal 
Sensor Data and Emerging Techniques 
Modern DHTs collect data passively, continuously, and 
frequently, leading to rich streams of time series data 
with high dimensionality, complex data structure, and 
potentially noisy signals.  With features derived from 
multi-modal sensors, one can directly combine those 
features in linear or nonlinear fashion using statistical 
and machine learning models. For example, as dis-
cussed previously, by combining motion-related features 
acquired from actigraphy, and heart rate/heart rate vari-
ability features acquired from wearable electrocardio-
gram (ECG), the accuracy for sleep prediction and sleep 
stage classification can be potentially increased when 
compared to using only one of these modalities (Aktaru-
zzaman et al., 2017; Yuda et al., 2017). However, when 
multi-modal sensors are deployed simultaneously, some 
new challenges arise due to the continuous nature of the 
measurements, and the interrelation between different 
modalities. It becomes crucial to fully utilize the rich 
data and identify the homogenous underlying signals 
(such as disease progression or treatment effects) from 
multiple modalities while accounting for the possible 
heterogeneity across modalities. 

2.1 Fully Utilize the Temporal Aspect of 
Sensor Data
Before fusing data collected by multiple sensor modali-
ties, a key issue to consider is to leverage the continuous 
time series signals from each of the sensors. It is still 
common practice to derive features that quantify certain 
physiological or behavioral characteristics (Di et al., 
2019). For example, total activity counts have been used 
to represent overall daily activity intensity in many stud-
ies using accelerometers (Varma et al., 2017). Simi-
larly, time-in-ranges indices are commonly employed 
in studies involving continuous glucose monitoring 
(CGM) sensors to quantify the quality of glucose 
control (Battelino et al., 2019) However, these fea-
tures are summary measures and do not reveal the 
temporal variations within a day. 

In circadian rhythm research, cosinor and extended 
cosinor models have been utilized to parametrically 
estimate the daily diurnal trend as a cosinor (or trans-
formed cosinor) curve to represent the amplitude and 

phase of time series data  (i.e. time to reach the peak) 
(Marler et al., 2006; Cornelissen, 2014). Time series 
data collected by sensors can be considered as a func-
tion of time.  More recently, functional data analysis 
(Georgiev et al., 1998), which was developed to 
study the smooth functional behaviors of curves 
over a continuum, has been widely use to nonpara-
metrically estimate the temporal characteristics of 
physiological trends or diurnal patterns (Goldsmith 
et al., 2016). By assuming the underlying functional 
smoothness, functional data analysis approaches such 
as functional regression (function-on-scalar or scalar-
on-function) and functional principal component 
analyses can identify treatment effects within a 
specific time window in a day, or to detect a shift of 
phase across different cohorts. For example, Spira 
et al. recently discovered significant differences in 
activity levels between participants with and without 
β-amyloid (Aβ) antibody only within specific time 
windows during a day, by using function-on-scalar 
regression (2021). 

Other than emerging statistical methodologies that 
aims to reveal temporal trends, modern deep learn-
ing architectures such as Recurrent Neural Network 
(RNN) can ingest time-sequential data collected by 
wearables to solve for prediction problems (Nweke et 
al., 2018), such as human activity recognition (Chen 
et al., 2021). Specifically, RNN models using Long 
Short-Term Memory (LSTM) with different memory 
units have been widely used to model data collected 
by wearable devices (Rabby et al., 2021; Uddin and 
Soylu, 2021). 

The prediction ahead of time of glucose concen-
tration levels can be reliably achieved by exploiting 
their recent history, monitored by (minimally inva-
sive or non-invasive) CGM sensors, in combina-
tion with data-driven algorithms. Simple data-driven 
strategies, using polynomial or linear autoregressive 
models (Eren-Oruklu et al., 2009), as well as more 
sophisticated methods, such as Kalman filters (Fac-
chinetti et al., 2011) or neural networks (Rabby et al., 
2021), have proven effective in the short-term predic-
tion of future glucose levels (Prendin et al., 2021).

With the amount of available data collected by 
wearables rapidly growing, these deep learning 
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approaches and model-based techniques will become 
mainstream and standard approaches to deal with 
real-world measurements. 

2.2 Separate the Joint Effects and Individual 
Modal Specific Effects
In clinical trials, fusion of multi-modal sensor data can 
be used to identify overall treatment effects by aggregat-
ing information from different physiological/behavioral 
domains. To reveal such effects, sometimes it is necessary 
to separate the joint effects that are homogenous across 
different modalities from the modal-specific effects. 

In 2013, Lock et al., developed the Joint and Indi-
vidual Variation Explained (JIVE) and used it to study 
the association between gene expression and miRNA 
data collected from the same samples (2013). As a data 
fusion technique and an extension to principal com-
ponent analysis, JIVE decomposes multi-modal data 
into a low-rank approximation capturing joint variation 
across data types, low-rank approximations for struc-
tured variation individual to each data modal. Di et al. 
applied it to integrate accelerometry-derived features 
quantifying three physiological domains of activity, 
sleep, and circadian rhythm quantify and separate 
between- and within-domain variation (Di et al., 2019).  
The same concept can be directly implemented to study 
features derived from multi-modal sensors. With recent 
generalizations and extensions such as to account for  
heterogeneous data types (continuous/binary/count) (Li 
and Gaynanova, 2017) and partially shared information 
between modals (Gaynanova and Li, 2017), JIVE shows 
the promise to fuse multi-modal sensor data.

JIVE provides a framework to properly quantify the 
interrelation and codependency across multiple data 
modalities. Conceptually, the interrelation and codepen-
dency can be considered as an outcome measurement by 
itself. With longitudinal clinical trials with multi-modal 
sensors, the change of such interrelation can be traced and 
analyzed to provide meaningful clinical interpretation. 

3. Practical Considerations to Incorporate 
multi-modal sensors into clinical trials
FDA recently released the draft guidance “Digital 
Health Technologies for Remote Data Acquisition in 
Clinical Investigations” which provided recommenda-
tions on the use of DHTs in clinical investigations, 
such as considerations for device selection, endpoints 
validation and verification, and statistical analysis. (US 
FDA, 2021). Di et al. provided operational suggestions to 
deploy DHTs in clinical studies to minimize the impact of 
missing data (Di et al., 2022). Incorporating multi-modal 
sensors should in principle follow these suggestions, such 
as to configure the devices appropriately, to determine the 
optimal placement location of the device, and to collect 
additional contextual information, when possible. 

For clinical studies where patients wear one or mul-
tiple devices for a long period of time, it is crucial to 
incorporate the patients’ perspective to increase their 
adherence. At the design phase of the studies, focus 
group of patients can be used to capture their voice to 
understand the preferrable form factor of the device(s) 
and the outcome measures that is the most meaningful 
to their daily life and health conditions. One question 
that can be considered is that to obtain a holistic view 
of multiple physiological/cognitive/behavior/environ-
mental domains, should we identify a single device 
with multiple embedded sensors instead of providing 
multiple devices? To reduce risks to patients, as sug-
gested by FDA in the draft guidance (US FDA, 2021), it 
is important to have a comprehensive informed consent 
of human subjects that details what data will be acquired 
from the multi-modal sensors, what foreseeable risks, 
patients’ privacy concern, or discomforts may occur in 
using the sensors, and intended research purposes and 
data use. 

There are other advantages of using multi-modal 
data to improve clinical studies. For example, with the 
technological advancement and widespread adoption of 
consumer grade wearable devices that contain multiple 
built-in sensors, we can obtain individualized baseline 
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that is close to “truth” using patients’ historical wear-
able device data to assess change in digital measures 
over weeks, months, or even years. Similarly, this 
historical device data can help prescreen patients for 
particular phenotypes and characteristics of interest to 
select patient cohorts for early phase (I or II) studies. 
This has the potential to improve the efficiency of these 
typically small studies by reducing variability.  

4. Conclusion
Multi-modal sensors are beneficial to clinical stud-
ies by providing a holistic picture of human behavior 
and physiology in real-life. A broader application of 
advanced methodologies and innovative approaches to 
analyze data from multi-modal sensors are needed for 
researchers to fully utilize those valuable data.
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